Real case

The slides still use an older, somewhat more complex form of the problem. A simpler way is to directly deal with the residual equation

$$
\mathrm{r}=\nabla \times \boldsymbol{H}=0
$$

(in iron).
In the finite element case, we are solving the discrete residual equation

$$
\boldsymbol{r}_{i}=\int \mathrm{N}_{\mathrm{i}} \cdot \nabla \times \boldsymbol{H} d V=0
$$

For all i in $1 \ldots$...number_of_nodes, where $\mathrm{N} _i$ are the shape functions. We remember that \mathbf{B} is of course defined with the vector potential:

$$
\boldsymbol{B}=a_{i} \nabla \times N_{i}+a_{1} \nabla \times N_{2}+\cdots
$$

In the finite element case, the entry (i, j) of the real Jacobian is then

$$
\frac{\partial}{\partial a_{j}} \boldsymbol{r}_{i}=\int \frac{\partial}{\partial a_{j}} N_{i} \cdot(\nabla \times \boldsymbol{H}) d V
$$

which is simplified into

$$
\int N_{i} \cdot \nabla \times\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{B}} \frac{\partial \boldsymbol{B}}{\partial a_{j}}\right) d V
$$

with the chain rule of differentiation:

$$
\frac{\partial \boldsymbol{H}}{\partial a_{j}}=\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{B}} \frac{\partial \boldsymbol{B}}{\partial a_{j}}
$$

The expression is then further simplified by noting that

$$
\frac{\partial \boldsymbol{B}}{\partial a_{j}}=\nabla \times N_{j}
$$

Finally, the expression

$$
\int N_{i} \cdot \nabla \times\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{B}} \nabla \times N_{j}\right) d V
$$

is simplified (see below) into the more-familiar curl-curl form

$$
\int\left(\nabla \times N_{i}\right) \cdot\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{B}} \nabla \times N_{j}\right) d V
$$

(The curl-curl manipulation is done with the identity (see Potential Formulations in Magnetics, http://maxwell.sze.hu/docs/C4.pdf page 80 or so)

$$
\nabla \cdot(\boldsymbol{u} \times \boldsymbol{v})=\boldsymbol{v} \cdot \nabla \times \boldsymbol{u}-\boldsymbol{u} \cdot \nabla \times \boldsymbol{v}
$$

Using

$$
v=N_{i}
$$

and

$$
u=\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{B}} \nabla \times N_{j}
$$

) See the Appendix for a more thorough derivation.

Handling the differential reluctivity term

Now, the only difficulty left is evaluating the vector-by-vector derivative (for more info, the Wikipedia page can help)

$$
\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{B}}=\left[\begin{array}{ll}
\frac{\partial H_{x}}{\partial B_{x}} & \frac{\partial H_{x}}{\partial B_{y}} \\
\frac{\partial H_{y}}{\partial B_{x}} & \frac{\partial H_{y}}{\partial B_{y}}
\end{array}\right]
$$

For isotropic materials with no hysteresis, a helpful approach is to use the reluctivity written as a function of the square of the flux density, yielding e.g.

$$
\frac{\partial H_{x}}{\partial B_{x}}=\frac{\partial}{\partial B_{x}}\left(v\left(B^{2}\right) B_{x}\right)=v \frac{\partial B_{x}}{\partial B_{x}}+\frac{\partial v\left(B^{2}\right)}{\partial B} B_{x}=v+\left(\frac{\partial v}{\partial B^{2}} \frac{\partial B^{2}}{\partial B_{x}}\right) B_{x} .
$$

where the second form is obtained using the derivative-of-product formula. The final form is then obtained by treating the derivative-of-reluctivity term with the chain rule of differentiation. The reluctivity derivative $\frac{\partial v}{\partial B^{2}}$ is normally known directly as such from an interpolation table.

The flux density derivative is simplified into

$$
\frac{\partial B^{2}}{\partial B_{x}}=\frac{\partial\left(B_{x}^{2}+B_{y}^{2}\right)}{\partial B_{x}}=2 B_{x}
$$

In the end, we thus have

$$
\frac{\partial H_{x}}{\partial B_{x}}=v+B_{x} \frac{\partial v}{\partial B^{2}} 2 B_{x}
$$

For the $\mathrm{dx} / \mathrm{dy}$ cross-term, the first term on the rhs disappears, yielding

$$
\frac{\partial H_{x}}{\partial B_{y}}=2 B_{x} B_{y} \frac{\partial v}{\partial B^{2}}
$$

Complex case

The complex case is analysed somewhat similarly, by splitting the residual into real and imaginary parts. The main differences are seen in the differential reluctivity tensor, as \mathbf{H} now depends on both the real and imaginary components of \mathbf{B}

$$
\boldsymbol{H}=\boldsymbol{H}\left(\boldsymbol{B}^{R}, \boldsymbol{B}^{I}\right)
$$

Then, we see e.g. how the real part of the residual depends on both the real and complex part of the vector potential:

$$
\frac{\partial}{\partial a_{j}^{R}} \boldsymbol{r}_{i}^{R}=\int N_{i} \cdot\left(\nabla \times \frac{\partial}{\partial a_{j}^{R}} \boldsymbol{H}\left(\boldsymbol{B}^{\boldsymbol{R}}, \boldsymbol{B}^{I}\right) d V\right.
$$

Now, as the real part of B only depends on the real part of the vector potential, we get

$$
\frac{\partial}{\partial a_{j}^{R}} \boldsymbol{r}_{i}^{R}=\int N_{i} \cdot\left(\nabla \times \frac{\partial \boldsymbol{H}}{\partial \boldsymbol{B}^{R}} \frac{\partial}{\partial a_{j}^{R}} \boldsymbol{B}^{R}\right) d V=\int N_{i} \cdot\left(\nabla \times \frac{\partial \boldsymbol{H}}{\partial \boldsymbol{B}^{R}} \nabla \times N_{j}\right) d V
$$

Similarly, we get for the off-diagonal block of the Jacobian for example

$$
\frac{\partial}{\partial a_{j}^{I}} \boldsymbol{r}_{i}^{R}=\int N_{i} \cdot\left(\nabla \times \frac{\partial \boldsymbol{H}}{\partial \boldsymbol{B}^{I}} \nabla \times N_{j}\right) d V
$$

For non-hysteretic isotropic material, we see another difference in the squared amplitude of B :

$$
B^{2}=B_{x}^{r, 2}+B_{y}^{r, 2}+B_{x}^{r, 2}+B_{y}^{i, 2}
$$

Other than that, the treatment of the reluctivity tensor is similar to the real case.

APPENDIX: Derivation of the curl-curl equation

We begin with the equation

$$
\boldsymbol{v} \cdot \nabla \times(\nu \nabla \times \boldsymbol{A})
$$

Denote

$$
\boldsymbol{u}=v \nabla \times \boldsymbol{A}
$$

To reduce the expression into

$$
\boldsymbol{v} \cdot \nabla \times \boldsymbol{u}
$$

Using the identity, we get

$$
\boldsymbol{v} \cdot \nabla \times \boldsymbol{u}=\nabla \cdot(\boldsymbol{u} \times \boldsymbol{v})+\boldsymbol{u} \cdot \nabla \times \boldsymbol{v}
$$

Taking the integral of the right-hand side term and using the Gauss theorem on the first term, we get

$$
\int_{V} \nabla \cdot(\boldsymbol{u} \times \boldsymbol{v})+\boldsymbol{u} \cdot \nabla \times \boldsymbol{v} d V=\int_{\partial V}(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{n} d S+\int_{V} \boldsymbol{u} \cdot \nabla \times \boldsymbol{v} d V
$$

After substituting back the definition of u, we get

$$
\int_{\partial V}(v(\nabla \times \boldsymbol{A}) \times \boldsymbol{v}) \cdot \boldsymbol{n} d S+\int_{V}(v \nabla \times \boldsymbol{A}) \cdot(\nabla \times \boldsymbol{v}) d V
$$

The latter term is the familiar curl-curl integral. Next, let's show that the boundary term disappears in typical problems.

For the boundary integral, we can again apply the vector triple product identity to get

$$
\int_{\partial V}(v(\nabla \times \boldsymbol{A}) \times \boldsymbol{v}) \cdot \boldsymbol{n} d S=-\int_{\partial V}(\boldsymbol{n} \times \boldsymbol{v}) \cdot(v \nabla \times \boldsymbol{A}) d S
$$

The latter term is by definition identically zero on the entire boundary (under typical conditions):

- On Dirichlet boundaries, we are only using such test functions v that are zero on the boundary. Thus, the first term of the integrand is equal to zero.
- On Neumann boundaries, B is by definition perpendicular to the boundary, thus parallel to \mathbf{n}. On these boundaries, we can write $\nu \nabla \times A=c \boldsymbol{n}$ where c is some constant. Thus, the integrand is reduced to $(\boldsymbol{n} \times \boldsymbol{v}) \cdot c \boldsymbol{n}$ which is identically zero.

