Real case

The slides still use an older, somewhat more complex form of the problem. A simpler way is to
directly deal with the residual equation

r=VxXxH=0

(iniron).

In the finite element case, we are solving the discrete residual equation
rl=jN1V><HdV=0

Foralliin 1....number of nodes, where N_i are the shape functions. We remember that B is of
course defined with the vector potential:

B:aiVXNi+a1VXN2+"'

In the finite element case, the entry (i, j) of the real Jacobian is then

4 =f 4 N; - (V x H)dV
da; ri= da; i ( )
which is simplified into

[N,V x 0H 0B 4
: 0B da;
with the chain rule of differentiation:

O0H 0OH OB
da; 0B da;

The expression is then further simplified by noting that

aB—VXN
aaj_ It

Finally, the expression
J0H
fNi-VX(ﬁVXN])dV

is simplified (see below) into the more-familiar curl-curl form
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[(VxN,)- (Z—I;me)dv.

(The curl-curl manipulation is done with the identity (see Potential Formulations in
Magnetics, http://maxwell.sze.hu/docs/C4.pdf page 80 or so)

Viuxv)=v-Vxu-—u-Vxuv,
Using
U:Nl'
and
H
u=—-=VxN;

0B
) See the Appendix for a more thorough derivation.

Handling the differential reluctivity term

Now, the only difficulty left is evaluating the vector-by-vector derivative (for more info, the
Wikipedia page can help)

[6Hx OHx]
0H (0B, 0B,
0B |0H, O0H,

9B, 0B,

For isotropic materials with no hysteresis, a helpful approach is to use the reluctivity written as a
function of the square of the flux density, yielding e.g.

oH, 0 0B, dv(B?) <6v aBZ>
=V X

= —(v(B)B,) = 2B =v+(-——|B
38, ~ 9B, (VBB =vap+—op— B =v+{ 555

where the second form is obtained using the derivative-of-product formula. The final form is then
obtained by treating the derivative-of-reluctivity term with the chain rule of differentiation. The

reluctivity derivative a% is normally known directly as such from an interpolation table.

The flux density derivative is simplified into

0B* _ d(BZ + B?) B

2B
0B, 0B, X
In the end, we thus have
O _ +B.— 9p
9B, ' ' Pxppz “ox

For the dx/dy cross-term, the first term on the rhs disappears, yielding
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http://maxwell.sze.hu/docs/C4.pdf
https://en.wikipedia.org/wiki/Matrix_calculus#Scalar-by-vector

—* = 2B.B,—
9B, X7 9B?

Complex case

The complex case is analysed somewhat similarly, by splitting the residual into real and imaginary parts.
The main differences are seen in the differential reluctivity tensor, as H now depends on both the real and
imaginary components of B

H = H(BR,B")

Then, we see e.g. how the real part of the residual depends on both the real and complex part of the vector
potential:

0
rf =[N, (Vx ﬁH(BR,B’)dV

R
6aj ;

Now, as the real part of B only depends on the real part of the vector potential, we get

R oH 0 B oH
—rR=[N;- VX—TB dV—fNi-(meVXNj)dV

Similarly, we get for the off-diagonal block of the Jacobian for example
d

r’?=f1v.~<v><a—HVxN-)dV.
da/ ' ' J

B!
For non-hysteretic isotropic material, we see another difference in the squared amplitude of B:

)2 ,2 ,2 i,2
B* = By* + By“ + By + By

Other than that, the treatment of the reluctivity tensor is similar to the real case.
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APPENDIX: Derivation of the curl-curl equation

We begin with the equation

v-VX (WV XA
Denote
u=vwxA4a
To reduce the expression into
v-VXu

Using the identity, we get
v-VXu=V-(uxv)+u-Vxv

Taking the integral of the right-hand side term and using the Gauss theorem on the first term, we get

fV~(u><v)+u'V><vdV= (u><v)-nd5+fu-V><vdV
% v

av

After substituting back the definition of u, we get
(v(VxA)xv)'ndS+f(vV><A)-(va)dV
v 14

The latter term is the familiar curl-curl integral. Next, let’s show that the boundary term disappears in
typical problems.

For the boundary integral, we can again apply the vector triple product identity to get
W(VxA) Xv) -ndS = —f (nxv)  (vWxA)dS
v v

The latter term is by definition identically zero on the entire boundary (under typical conditions):

- On Dirichlet boundaries, we are only using such test functions v that are zero on the boundary.
Thus, the first term of the integrand is equal to zero.

- On Neumann boundaries, B is by definition perpendicular to the boundary, thus parallel to n. On
these boundaries, we can write vV X A = cn where c is some constant. Thus, the integrand is
reduced to (n X v) - cn which is identically zero.
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