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Real case 
 

The slides still use an older, somewhat more complex form of the problem. A simpler way is to 

directly deal with the residual equation 

 

r = ∇ × 𝑯 = 0 

 

 

(in iron). 

 

In the finite element case, we are solving the discrete residual equation 

 

𝒓𝒊 = ∫Ni ⋅ ∇ × 𝑯𝑑𝑉 = 0 

 

For all i in 1….number_of_nodes, where N_i are the shape functions. We remember that B is of 

course defined with the vector potential: 

 

 

𝑩 = 𝑎𝑖∇ × 𝑁𝑖 + 𝑎1∇ × 𝑁2 + ⋯ 

 

 

In the finite element case, the entry (i, j) of the real Jacobian is then 

 
𝜕

𝜕𝑎𝑗
𝒓𝑖 = ∫

𝜕

𝜕𝑎𝑗
𝑁𝑖 ⋅ (∇ × 𝑯)𝑑𝑉 

 

which is simplified into 

 

∫ 𝑁𝑖 ⋅ ∇ × (
𝜕𝑯

𝜕𝑩

𝜕𝑩

𝜕𝑎𝑗
)𝑑𝑉 

with the chain rule of differentiation: 

 
𝜕𝑯

𝜕𝑎𝑗
=

𝜕𝑯

𝜕𝑩

𝜕𝑩

𝜕𝑎𝑗
 

 

The expression is then further simplified by noting that 

 
𝜕𝑩

𝜕𝑎𝑗
= ∇ × 𝑁𝑗 . 

Finally, the expression 

 

∫ 𝑁𝑖 ⋅ ∇ × (
𝜕𝑯

𝜕𝑩
∇ × 𝑁𝑗) 𝑑𝑉 

 

is simplified (see below) into the more-familiar curl-curl form 
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∫ (∇ × 𝑁𝑖) ⋅ (
𝜕𝑯

𝜕𝑩
∇ × 𝑁𝑗) 𝑑𝑉. 

 

(The curl-curl manipulation is done with the identity (see Potential Formulations in 

Magnetics, http://maxwell.sze.hu/docs/C4.pdf page 80 or so) 

 
Using 

 

𝑣 = 𝑁𝑖 

and 

𝑢 =
𝜕𝑯

𝜕𝑩
𝛻 × 𝑁𝑗  

) See the Appendix for a more thorough derivation. 

 

 

Handling the differential reluctivity term 

 

Now, the only difficulty left is evaluating the vector-by-vector derivative (for more info, the 

Wikipedia page can help) 

 

𝜕𝑯

𝜕𝑩
=

[
 
 
 
 
𝜕𝐻𝑥

𝜕𝐵𝑥

𝜕𝐻𝑥

𝜕𝐵𝑦

𝜕𝐻𝑦

𝜕𝐵𝑥

𝜕𝐻𝑦

𝜕𝐵𝑦 ]
 
 
 
 

 

 

For isotropic materials with no hysteresis, a helpful approach is to use the reluctivity written as a 

function of the square of the flux density, yielding e.g. 

 

𝜕𝐻𝑥

𝜕𝐵𝑥
=

𝜕

𝜕𝐵𝑥

( 𝜈(𝐵2)𝐵𝑥)  = 𝜈
𝜕𝐵𝑥

𝜕𝐵𝑥
+

𝜕𝜈(𝐵2)

𝜕𝐵
𝐵𝑥 = 𝜈 + (

𝜕𝜈

𝜕𝐵2

𝜕𝐵2

𝜕𝐵𝑥
)𝐵𝑥 . 

 

where the second form is obtained using the derivative-of-product formula. The final form is then 

obtained by treating the derivative-of-reluctivity term with the chain rule of differentiation. The 

reluctivity derivative 
𝜕𝜈

𝜕𝐵2 is normally known directly as such from an interpolation table.  

 

The flux density derivative is simplified into 

 

𝜕𝐵2

𝜕𝐵𝑥
=

𝜕(𝐵𝑥
2 + 𝐵𝑦

2)

𝜕𝐵𝑥
= 2𝐵𝑥 

 

In the end, we thus have 

 
𝜕𝐻𝑥

𝜕𝐵𝑥
= 𝜈 + 𝐵𝑥

𝜕𝜈

𝜕𝐵2
 2𝐵𝑥 

 

For the dx/dy cross-term, the first term on the rhs disappears, yielding 

http://maxwell.sze.hu/docs/C4.pdf
https://en.wikipedia.org/wiki/Matrix_calculus#Scalar-by-vector
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𝜕𝐻𝑥

𝜕𝐵𝑦
= 2𝐵𝑥𝐵𝑦

𝜕𝜈

𝜕𝐵2
 

 

 

Complex case 
 

The complex case is analysed somewhat similarly, by splitting the residual into real and imaginary parts. 

The main differences are seen in the differential reluctivity tensor, as H now depends on both the real and 

imaginary components of B 

𝑯 = 𝑯(𝑩𝑅, 𝑩𝐼) 

Then, we see e.g. how the real part of the residual depends on both the real and complex part of the vector 

potential: 

𝜕

𝜕𝑎𝑗
𝑅 𝒓𝑖

𝑅 = ∫ 𝑁𝑖 ⋅ (∇ ×
𝜕

𝜕𝑎𝑗
𝑅 𝑯(𝑩𝑹, 𝑩𝐼)𝑑𝑉 

 

Now, as the real part of B only depends on the real part of the vector potential, we get 

 

𝜕

𝜕𝑎𝑗
𝑅 𝒓𝑖

𝑅 = ∫ 𝑁𝑖 ⋅ (∇ ×
𝜕𝑯

𝜕𝑩𝑅

𝜕

𝜕𝑎𝑗
𝑅 𝑩𝑅)𝑑𝑉 = ∫ 𝑁𝑖 ⋅ (∇ ×

𝜕𝑯

𝜕𝑩𝑅
∇ × 𝑁𝑗)𝑑𝑉 

 

Similarly, we get for the off-diagonal block of the Jacobian for example 

𝜕

𝜕𝑎𝑗
𝐼 𝒓𝑖

𝑅 = ∫ 𝑁𝑖 ⋅ (∇ ×
𝜕𝑯

𝜕𝑩𝐼
∇ × 𝑁𝑗) 𝑑𝑉. 

 

For non-hysteretic isotropic material, we see another difference in the squared amplitude of B:  

𝐵2 = 𝐵𝑥
𝑟,2 + 𝐵𝑦

𝑟,2 + 𝐵𝑥
𝑟,2 + 𝐵𝑦

𝑖,2 

Other than that, the treatment of the reluctivity tensor is similar to the real case. 

 

 

  



© 2020 Smeklab Ltd. All rights reserved. No warranty, implied or otherwise. 

APPENDIX: Derivation of the curl-curl equation 
 

We begin with the equation 

𝒗 ⋅ ∇ × (𝜈∇ × 𝑨) 

Denote 

𝒖 = 𝜈∇ × 𝑨 

To reduce the expression into 

𝒗 ⋅ ∇ × 𝒖 

Using the identity, we get 

𝒗 ⋅ ∇ × 𝒖 = ∇ ⋅ (𝒖 × 𝒗) + 𝒖 ⋅ ∇ × 𝒗 

Taking the integral of the right-hand side term and using the Gauss theorem on the first term, we get 

∫ ∇ ⋅ (𝒖 × 𝒗) + 𝒖 ⋅ ∇ × 𝒗𝑑𝑉 = ∫ (𝒖 × 𝒗) ⋅ 𝒏𝑑𝑆 + ∫𝒖 ⋅ ∇ × 𝒗𝑑𝑉
𝑉𝜕𝑉𝑉

 

 

After substituting back the definition of u, we get 

∫ (𝜈(∇ × 𝑨) × 𝒗) ⋅ 𝒏𝑑𝑆 + ∫(𝜈∇ × 𝑨) ⋅ (∇ × 𝒗)𝑑𝑉
𝑉𝜕𝑉

 

The latter term is the familiar curl-curl integral. Next, let’s show that the boundary term disappears in 

typical problems. 

 

For the boundary integral, we can again apply the vector triple product identity to get 

∫ (𝜈(∇ × 𝑨) × 𝒗) ⋅ 𝒏𝑑𝑆 = −∫ (𝒏 × 𝒗) ⋅ (𝜈∇ × 𝑨)𝑑𝑆
𝜕𝑉𝜕𝑉

 

The latter term is by definition identically zero on the entire boundary (under typical conditions): 

- On Dirichlet boundaries, we are only using such test functions v that are zero on the boundary. 

Thus, the first term of the integrand is equal to zero. 

- On Neumann boundaries, B is by definition perpendicular to the boundary, thus parallel to n. On 

these boundaries, we can write 𝜈∇ × 𝐴 = 𝑐𝒏 where c is some constant. Thus, the integrand is 

reduced to (𝒏 × 𝒗) ⋅ 𝑐𝒏 which is identically zero. 

 

 

 


